

openapi-core

Openapi-core is a Python library that adds client-side and server-side support
for the OpenAPI v3.0 [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md]
and OpenAPI v3.1 [https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md] specification.

Key features

	Validation and unmarshalling of request and response data (including webhooks)

	Integrations with popular libraries (Requests, Werkzeug) and frameworks (Django, Falcon, Flask, Starlette)

	Customization with media type deserializers and format unmarshallers

	Security data providers (API keys, Cookie, Basic and Bearer HTTP authentications)

Installation

 Unmarshalling

Unmarshalling

Unmarshalling is the process of converting a primitive schema type of value into a higher-level object based on a format keyword. All request/response data, that can be described by a schema in OpenAPI specification, can be unmarshalled.

Unmarshallers firstly validate data against the provided schema (See Validation).

Openapi-core comes with a set of built-in format unmarshallers:

	date - converts string into a date object,

	date-time - converts string into a datetime object,

	binary - converts string into a byte object,

	uuid - converts string into an UUID object,

	byte - decodes Base64-encoded string.

You can also define your own format unmarshallers (See Format unmarshallers).

Request unmarshalling

Use unmarshal_request method to validate and unmarshal request data against a given spec. By default, OpenAPI spec version is detected:

raises error if request is invalid
result = openapi.unmarshal_request(request)

Request object should implement OpenAPI Request protocol (See Integrations).

Note

Webhooks feature is part of OpenAPI v3.1 only

Use the same method to validate and unmarshal webhook request data against a given spec.

raises error if request is invalid
result = openapi.unmarshal_request(webhook_request)

Webhook request object should implement OpenAPI WebhookRequest protocol (See Integrations).

Retrieve validated and unmarshalled request data

get parameters
path_params = result.parameters.path
query_params = result.parameters.query
cookies_params = result.parameters.cookies
headers_params = result.parameters.headers
get body
body = result.body
get security data
security = result.security

You can also define your own request unmarshaller (See Request unmarshaller).

Response unmarshalling

Use unmarshal_response method to validate and unmarshal response data against a given spec. By default, OpenAPI spec version is detected:

raises error if response is invalid
result = openapi.unmarshal_response(request, response)

Response object should implement OpenAPI Response protocol (See Integrations).

Note

Webhooks feature is part of OpenAPI v3.1 only

Use the same method to validate and unmarshal response data from webhook request against a given spec.

raises error if request is invalid
result = openapi.unmarshal_response(webhook_request, response)

Retrieve validated and unmarshalled response data

get headers
headers = result.headers
get data
data = result.data

You can also define your own response unmarshaller (See Response unmarshaller).

 Validation

Validation

Validation is a process to validate request/response data under a given schema defined in OpenAPI specification.

Additionally, openapi-core uses the format keyword to check if primitive types conform to defined formats.

Such valid formats can be forther unmarshalled (See Unmarshalling).

Depends on the OpenAPI version, openapi-core comes with a set of built-in format validators such as: date, date-time, binary, uuid or byte.

You can also define your own format validators (See Format validators).

Request validation

Use validate_request method to validate request data against a given spec. By default, OpenAPI spec version is detected:

raises error if request is invalid
openapi.validate_request(request)

Request object should implement OpenAPI Request protocol (See Integrations).

Note

Webhooks feature is part of OpenAPI v3.1 only

Use the same method to validate webhook request data against a given spec.

raises error if request is invalid
openapi.validate_request(webhook_request)

Webhook request object should implement OpenAPI WebhookRequest protocol (See Integrations).

You can also define your own request validator (See Request validator).

Response validation

Use validate_response function to validate response data against a given spec. By default, OpenAPI spec version is detected:

from openapi_core import validate_response

raises error if response is invalid
openapi.validate_response(request, response)

Response object should implement OpenAPI Response protocol (See Integrations).

Note

Webhooks feature is part of OpenAPI v3.1 only

Use the same function to validate response data from webhook request against a given spec.

raises error if request is invalid
openapi.validate_response(webhook_request, response)

You can also define your own response validator (See Response validator).

 Integrations

Integrations

Openapi-core integrates with your popular libraries and frameworks. Each integration offers different levels of integration that help validate and unmarshal your request and response data.

	aiohttp.web

	Bottle

	Django

	Falcon

	FastAPI

	Flask

	Pyramid

	Requests

	Starlette

	Tornado

	Werkzeug

 aiohttp.web

aiohttp.web

This section describes integration with aiohttp.web [https://docs.aiohttp.org/en/stable/web.html] framework.

Low level

The integration defines classes useful for low level integration.

Request

Use AIOHTTPOpenAPIWebRequest to create OpenAPI request from aiohttp.web request:

from openapi_core.contrib.aiohttp import AIOHTTPOpenAPIWebRequest

async def hello(request):
 request_body = await request.text()
 openapi_request = AIOHTTPOpenAPIWebRequest(request, body=request_body)
 openapi.validate_request(openapi_request)
 return web.Response(text="Hello, world")

Response

Use AIOHTTPOpenAPIWebResponse to create OpenAPI response from aiohttp.web response:

from openapi_core.contrib.starlette import AIOHTTPOpenAPIWebResponse

async def hello(request):
 request_body = await request.text()
 response = web.Response(text="Hello, world")
 openapi_request = AIOHTTPOpenAPIWebRequest(request, body=request_body)
 openapi_response = AIOHTTPOpenAPIWebResponse(response)
 result = openapi.unmarshal_response(openapi_request, openapi_response)
 return response

 Bottle

Bottle

See bottle-openapi-3 [https://github.com/cope-systems/bottle-openapi-3] project.

 Django

Django

This section describes integration with Django [https://www.djangoproject.com] web framework.
The integration supports Django from version 3.0 and above.

Middleware

Django can be integrated by middleware [https://docs.djangoproject.com/en/5.0/topics/http/middleware/] to apply OpenAPI validation to your entire application.

Add DjangoOpenAPIMiddleware to your MIDDLEWARE list and define OPENAPI.

 # settings.py
 from openapi_core import OpenAPI

 MIDDLEWARE = [
 # ...
 'openapi_core.contrib.django.middlewares.DjangoOpenAPIMiddleware',
]

 OPENAPI = OpenAPI.from_dict(spec_dict)

After that all your requests and responses will be validated.

Also you have access to unmarshal result object with all unmarshalled request data through openapi attribute of request object.

from django.views import View

class MyView(View):
 def get(self, request):
 # get parameters object with path, query, cookies and headers parameters
 unmarshalled_params = request.openapi.parameters
 # or specific location parameters
 unmarshalled_path_params = request.openapi.parameters.path

 # get body
 unmarshalled_body = request.openapi.body

 # get security data
 unmarshalled_security = request.openapi.security

Response validation

You can skip response validation process: by setting OPENAPI_RESPONSE_CLS to None

 # settings.py
 from openapi_core import OpenAPI

 MIDDLEWARE = [
 # ...
 'openapi_core.contrib.django.middlewares.DjangoOpenAPIMiddleware',
]

 OPENAPI = OpenAPI.from_dict(spec_dict)
 OPENAPI_RESPONSE_CLS = None

Low level

The integration defines classes useful for low level integration.

Request

Use DjangoOpenAPIRequest to create OpenAPI request from Django request:

from openapi_core.contrib.django import DjangoOpenAPIRequest

class MyView(View):
 def get(self, request):
 openapi_request = DjangoOpenAPIRequest(request)
 openapi.validate_request(openapi_request)

Response

Use DjangoOpenAPIResponse to create OpenAPI response from Django response:

from openapi_core.contrib.django import DjangoOpenAPIResponse

class MyView(View):
 def get(self, request):
 response = JsonResponse({'hello': 'world'})
 openapi_request = DjangoOpenAPIRequest(request)
 openapi_response = DjangoOpenAPIResponse(response)
 openapi.validate_response(openapi_request, openapi_response)
 return response

 Falcon

Falcon

This section describes integration with Falcon [https://falconframework.org] web framework.
The integration supports Falcon from version 3.0 and above.

Middleware

The Falcon API can be integrated by FalconOpenAPIMiddleware middleware.

 from openapi_core.contrib.falcon.middlewares import FalconOpenAPIMiddleware

 openapi_middleware = FalconOpenAPIMiddleware.from_spec(spec)

 app = falcon.App(
 # ...
 middleware=[openapi_middleware],
)

Additional customization parameters can be passed to the middleware.

 from openapi_core.contrib.falcon.middlewares import FalconOpenAPIMiddleware

 openapi_middleware = FalconOpenAPIMiddleware.from_spec(
 spec,
 extra_format_validators=extra_format_validators,
)

 app = falcon.App(
 # ...
 middleware=[openapi_middleware],
)

You can skip response validation process: by setting response_cls to None

 from openapi_core.contrib.falcon.middlewares import FalconOpenAPIMiddleware

 openapi_middleware = FalconOpenAPIMiddleware.from_spec(
 spec,
 response_cls=None,
)

 app = falcon.App(
 # ...
 middleware=[openapi_middleware],
)

After that you will have access to validation result object with all validated request data from Falcon view through request context.

class ThingsResource:
 def on_get(self, req, resp):
 # get parameters object with path, query, cookies and headers parameters
 validated_params = req.context.openapi.parameters
 # or specific location parameters
 validated_path_params = req.context.openapi.parameters.path

 # get body
 validated_body = req.context.openapi.body

 # get security data
 validated_security = req.context.openapi.security

Low level

You can use FalconOpenAPIRequest as a Falcon request factory:

from openapi_core.contrib.falcon import FalconOpenAPIRequest

openapi_request = FalconOpenAPIRequest(falcon_request)
result = openapi.unmarshal_request(openapi_request)

You can use FalconOpenAPIResponse as a Falcon response factory:

from openapi_core.contrib.falcon import FalconOpenAPIResponse

openapi_response = FalconOpenAPIResponse(falcon_response)
result = openapi.unmarshal_response(openapi_request, openapi_response)

 FastAPI

FastAPI

This section describes integration with FastAPI [https://fastapi.tiangolo.com] ASGI framework.

Note

FastAPI also provides OpenAPI support. The main difference is that, unlike FastAPI’s code-first approach, OpenAPI-core allows you to laverage your existing specification that alligns with API-First approach. You can read more about API-first vs. code-first in the Guide to API-first [https://www.postman.com/api-first/].

Middleware

FastAPI can be integrated by middleware [https://fastapi.tiangolo.com/tutorial/middleware/] to apply OpenAPI validation to your entire application.

Add FastAPIOpenAPIMiddleware with OpenAPI object to your middleware list.

 from fastapi import FastAPI
 from openapi_core.contrib.fastapi.middlewares import FastAPIOpenAPIMiddleware

 app = FastAPI()
 app.add_middleware(FastAPIOpenAPIMiddleware, openapi=openapi)

After that all your requests and responses will be validated.

Also you have access to unmarshal result object with all unmarshalled request data through openapi scope of request object.

async def homepage(request):
 # get parameters object with path, query, cookies and headers parameters
 unmarshalled_params = request.scope["openapi"].parameters
 # or specific location parameters
 unmarshalled_path_params = request.scope["openapi"].parameters.path

 # get body
 unmarshalled_body = request.scope["openapi"].body

 # get security data
 unmarshalled_security = request.scope["openapi"].security

Response validation

You can skip response validation process: by setting response_cls to None

 app = FastAPI()
 app.add_middleware(
 FastAPIOpenAPIMiddleware,
 openapi=openapi,
 response_cls=None,
)

Low level

For low level integration see Starlette integration.

 Flask

Flask

This section describes integration with Flask [https://flask.palletsprojects.com] web framework.

View decorator

Flask can be integrated by view decorator [https://flask.palletsprojects.com/en/latest/patterns/viewdecorators/] to apply OpenAPI validation to your application’s specific views.

Use FlaskOpenAPIViewDecorator with OpenAPI object to create the decorator.

 from openapi_core.contrib.flask.decorators import FlaskOpenAPIViewDecorator

 openapi_validated = FlaskOpenAPIViewDecorator(openapi)

 @app.route('/home')
 @openapi_validated
 def home():
 return "Welcome home"

You can skip response validation process: by setting response_cls to None

 from openapi_core.contrib.flask.decorators import FlaskOpenAPIViewDecorator

 openapi_validated = FlaskOpenAPIViewDecorator(
 openapi,
 response_cls=None,
)

If you want to decorate class based view you can use the decorators attribute:

 class MyView(View):
 decorators = [openapi_validated]

 def dispatch_request(self):
 return "Welcome home"

 app.add_url_rule('/home', view_func=MyView.as_view('home'))

View

As an alternative to the decorator-based integration, a Flask method based views can be integrated by inheritance from FlaskOpenAPIView class.

 from openapi_core.contrib.flask.views import FlaskOpenAPIView

 class MyView(FlaskOpenAPIView):
 def get(self):
 return "Welcome home"

 app.add_url_rule(
 '/home',
 view_func=MyView.as_view('home', spec),
)

Additional customization parameters can be passed to the view.

 from openapi_core.contrib.flask.views import FlaskOpenAPIView

 class MyView(FlaskOpenAPIView):
 def get(self):
 return "Welcome home"

 app.add_url_rule(
 '/home',
 view_func=MyView.as_view(
 'home', spec,
 extra_format_validators=extra_format_validators,
),
)

Request parameters

In Flask, all unmarshalled request data are provided as Flask request object’s openapi.parameters attribute

 from flask.globals import request

 @app.route('/browse/<id>/')
 @openapi
 def browse(id):
 browse_id = request.openapi.parameters.path['id']
 page = request.openapi.parameters.query.get('page', 1)

 return f"Browse {browse_id}, page {page}"

Low level

You can use FlaskOpenAPIRequest as a Flask request factory:

from openapi_core.contrib.flask import FlaskOpenAPIRequest

openapi_request = FlaskOpenAPIRequest(flask_request)
result = openapi.unmarshal_request(openapi_request)

For response factory see Werkzeug integration.

 Pyramid

Pyramid

See pyramid_openapi3 [https://github.com/niteoweb/pyramid_openapi3] project.

 Requests

Requests

This section describes integration with Requests [https://requests.readthedocs.io] library.

Low level

The integration defines classes useful for low level integration.

Request

Use RequestsOpenAPIRequest to create OpenAPI request from Requests request:

from openapi_core.contrib.requests import RequestsOpenAPIRequest

request = Request('POST', url, data=data, headers=headers)
openapi_request = RequestsOpenAPIRequest(request)
openapi.validate_request(openapi_request)

Webhook request

Use RequestsOpenAPIWebhookRequest to create OpenAPI webhook request from Requests request:

from openapi_core.contrib.requests import RequestsOpenAPIWebhookRequest

request = Request('POST', url, data=data, headers=headers)
openapi_webhook_request = RequestsOpenAPIWebhookRequest(request, "my_webhook")
openapi.validate_request(openapi_webhook_request)

Response

Use RequestsOpenAPIResponse to create OpenAPI response from Requests response:

from openapi_core.contrib.requests import RequestsOpenAPIResponse

session = Session()
request = Request('POST', url, data=data, headers=headers)
prepped = session.prepare_request(req)
response = session,send(prepped)
openapi_request = RequestsOpenAPIRequest(request)
openapi_response = RequestsOpenAPIResponse(response)
openapi.validate_response(openapi_request, openapi_response)

 Starlette

Starlette

This section describes integration with Starlette [https://www.starlette.io] ASGI framework.

Middleware

Starlette can be integrated by middleware [https://www.starlette.io/middleware/] to apply OpenAPI validation to your entire application.

Add StarletteOpenAPIMiddleware with OpenAPI object to your middleware list.

 from openapi_core.contrib.starlette.middlewares import StarletteOpenAPIMiddleware
 from starlette.applications import Starlette
 from starlette.middleware import Middleware

 middleware = [
 Middleware(StarletteOpenAPIMiddleware, openapi=openapi),
]

 app = Starlette(
 # ...
 middleware=middleware,
)

After that all your requests and responses will be validated.

Also you have access to unmarshal result object with all unmarshalled request data through openapi scope of request object.

async def homepage(request):
 # get parameters object with path, query, cookies and headers parameters
 unmarshalled_params = request.scope["openapi"].parameters
 # or specific location parameters
 unmarshalled_path_params = request.scope["openapi"].parameters.path

 # get body
 unmarshalled_body = request.scope["openapi"].body

 # get security data
 unmarshalled_security = request.scope["openapi"].security

Response validation

You can skip response validation process: by setting response_cls to None

 middleware = [
 Middleware(StarletteOpenAPIMiddleware, openapi=openapi, response_cls=None),
]

 app = Starlette(
 # ...
 middleware=middleware,
)

Low level

The integration defines classes useful for low level integration.

Request

Use StarletteOpenAPIRequest to create OpenAPI request from Starlette request:

from openapi_core.contrib.starlette import StarletteOpenAPIRequest

async def homepage(request):
 openapi_request = StarletteOpenAPIRequest(request)
 result = openapi.unmarshal_request(openapi_request)
 return JSONResponse({'hello': 'world'})

Response

Use StarletteOpenAPIResponse to create OpenAPI response from Starlette response:

from openapi_core.contrib.starlette import StarletteOpenAPIResponse

async def homepage(request):
 response = JSONResponse({'hello': 'world'})
 openapi_request = StarletteOpenAPIRequest(request)
 openapi_response = StarletteOpenAPIResponse(response)
 openapi.validate_response(openapi_request, openapi_response)
 return response

 Tornado

Tornado

See tornado-openapi3 [https://github.com/correl/tornado-openapi3] project.

 Werkzeug

Werkzeug

This section describes integration with Werkzeug [https://werkzeug.palletsprojects.com] a WSGI web application library.

Low level

The integration defines classes useful for low level integration.

Request

Use WerkzeugOpenAPIRequest to create OpenAPI request from Werkzeug request:

from openapi_core.contrib.werkzeug import WerkzeugOpenAPIRequest

def application(environ, start_response):
 request = Request(environ)
 openapi_request = WerkzeugOpenAPIRequest(request)
 openapi.validate_request(openapi_request)
 response = Response("Hello world", mimetype='text/plain')
 return response(environ, start_response)

Response

Use WerkzeugOpenAPIResponse to create OpenAPI response from Werkzeug response:

from openapi_core.contrib.werkzeug import WerkzeugOpenAPIResponse

def application(environ, start_response):
 request = Request(environ)
 response = Response("Hello world", mimetype='text/plain')
 openapi_request = WerkzeugOpenAPIRequest(request)
 openapi_response = WerkzeugOpenAPIResponse(response)
 openapi.validate_response(openapi_request, openapi_response)
 return response(environ, start_response)

 Customizations

Customizations

OpenAPI accepts Config object that allows users to customize the behavior validation and unmarshalling processes.

	Specification validation

	Request validator

	Response validator

	Request unmarshaller

	Response unmarshaller

	Media type deserializers

	Format validators

	Format unmarshallers

 Specification validation

Specification validation

By default, on OpenAPI creation time, the provided specification is also validated.

If you know you have a valid specification already, disabling the validator can improve the performance.

 from openapi_core import Config

 config = Config(
 spec_validator_cls=None,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)

 Request validator

Request validator

By default, request validator is selected based on detected specification version.

In order to explicitly validate a:

	OpenAPI 3.0 spec, import V30RequestValidator

	OpenAPI 3.1 spec, import V31RequestValidator or V31WebhookRequestValidator

 from openapi_core import V31RequestValidator

 config = Config(
 request_validator_cls=V31RequestValidator,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)
 openapi.validate_request(request)

You can also explicitly import V3RequestValidator which is a shortcut to the latest OpenAPI v3 version.

 Response validator

Response validator

By default, response validator is selected based on detected specification version.

In order to explicitly validate a:

	OpenAPI 3.0 spec, import V30ResponseValidator

	OpenAPI 3.1 spec, import V31ResponseValidator or V31WebhookResponseValidator

 from openapi_core import V31ResponseValidator

 config = Config(
 response_validator_cls=V31ResponseValidator,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)
 openapi.validate_response(request, response)

You can also explicitly import V3ResponseValidator which is a shortcut to the latest OpenAPI v3 version.

 Request unmarshaller

Request unmarshaller

By default, request unmarshaller is selected based on detected specification version.

In order to explicitly validate and unmarshal a:

	OpenAPI 3.0 spec, import V30RequestUnmarshaller

	OpenAPI 3.1 spec, import V31RequestUnmarshaller or V31WebhookRequestUnmarshaller

 from openapi_core import V31RequestUnmarshaller

 config = Config(
 request_unmarshaller_cls=V31RequestUnmarshaller,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)
 result = openapi.unmarshal_request(request)

You can also explicitly import V3RequestUnmarshaller which is a shortcut to the latest OpenAPI v3 version.

 Response unmarshaller

Response unmarshaller

In order to explicitly validate and unmarshal a:

	OpenAPI 3.0 spec, import V30ResponseUnmarshaller

	OpenAPI 3.1 spec, import V31ResponseUnmarshaller or V31WebhookResponseUnmarshaller

 from openapi_core import V31ResponseUnmarshaller

 config = Config(
 response_unmarshaller_cls=V31ResponseUnmarshaller,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)
 result = openapi.unmarshal_response(request, response)

You can also explicitly import V3ResponseUnmarshaller which is a shortcut to the latest OpenAPI v3 version.

 Media type deserializers

Media type deserializers

OpenAPI comes with a set of built-in media type deserializers such as: application/json, application/xml, application/x-www-form-urlencoded or multipart/form-data.

You can also define your own ones. Pass custom defined media type deserializers dictionary with supported mimetypes as a key to unmarshal_response function:

 def protobuf_deserializer(message):
 feature = route_guide_pb2.Feature()
 feature.ParseFromString(message)
 return feature

 extra_media_type_deserializers = {
 'application/protobuf': protobuf_deserializer,
 }

 config = Config(
 extra_media_type_deserializers=extra_media_type_deserializers,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)

 result = openapi.unmarshal_response(request, response)

 Format validators

Format validators

OpenAPI defines a format keyword that hints at how a value should be interpreted, e.g. a string with the type date should conform to the RFC 3339 date format.

OpenAPI comes with a set of built-in format validators, but it’s also possible to add custom ones.

Here’s how you could add support for a usdate format that handles dates of the form MM/DD/YYYY:

 import re

 def validate_usdate(value):
 return bool(re.match(r"^\d{1,2}/\d{1,2}/\d{4}$", value))

 extra_format_validators = {
 'usdate': validate_usdate,
 }

 config = Config(
 extra_format_validators=extra_format_validators,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)

 openapi.validate_response(request, response)

 Format unmarshallers

Format unmarshallers

Based on format keyword, openapi-core can also unmarshal values to specific formats.

Openapi-core comes with a set of built-in format unmarshallers, but it’s also possible to add custom ones.

Here’s an example with the usdate format that converts a value to date object:

 from datetime import datetime

 def unmarshal_usdate(value):
 return datetime.strptime(value, "%m/%d/%y").date

 extra_format_unmarshallers = {
 'usdate': unmarshal_usdate,
 }

 config = Config(
 extra_format_unmarshallers=extra_format_unmarshallers,
)
 openapi = OpenAPI.from_file_path('openapi.json', config=config)

 result = openapi.unmarshal_response(request, response)

 Security

Security

Openapi-core provides you easy access to security data for authentication and authorization process.

Supported security schemas:

	http – for Basic and Bearer HTTP authentications schemes

	apiKey – for API keys and cookie authentication

Here’s an example with scheme BasicAuth and ApiKeyAuth security schemes:

security:
 - BasicAuth: []
 - ApiKeyAuth: []
components:
 securitySchemes:
 BasicAuth:
 type: http
 scheme: basic
 ApiKeyAuth:
 type: apiKey
 in: header
 name: X-API-Key

Security schemes data are accessible from security attribute of RequestUnmarshalResult object.

get basic auth decoded credentials
result.security['BasicAuth']

get api key
result.security['ApiKeyAuth']

 Extensions

Extensions

x-model

By default, objects are unmarshalled to dictionaries. You can use dynamically created dataclasses by providing x-model-path property inside schema definition with name of the model.

 # ...
 components:
 schemas:
 Coordinates:
 x-model: Coordinates
 type: object
 required:
 - lat
 - lon
 properties:
 lat:
 type: number
 lon:
 type: number

As a result of unmarshalling process, you will get Coordinates class instance with lat and lon attributes.

x-model-path

You can use your own dataclasses, pydantic models or models generated by third party generators (i.e. datamodel-code-generator [https://github.com/koxudaxi/datamodel-code-generator]) by providing x-model-path property inside schema definition with location of your class.

 ...
 components:
 schemas:
 Coordinates:
 x-model-path: foo.bar.Coordinates
 type: object
 required:
 - lat
 - lon
 properties:
 lat:
 type: number
 lon:
 type: number

foo/bar.py
from dataclasses import dataclass

@dataclass
class Coordinates:
 lat: float
 lon: float

As a result of unmarshalling process, you will get instance of your own dataclasses or model.

 Contributing

Contributing

Firstly, thank you all for taking the time to contribute.

The following section describes how you can contribute to the openapi-core project on GitHub.

Reporting bugs

Before you report

	Check whether your issue does not already exist in the Issue tracker [https://github.com/python-openapi/openapi-core/issues].

	Make sure it is not a support request or question better suited for Discussion board [https://github.com/python-openapi/openapi-core/discussions].

How to submit a report

	Include clear title.

	Describe your runtime environment with exact versions you use.

	Describe the exact steps which reproduce the problem, including minimal code snippets.

	Describe the behavior you observed after following the steps, pasting console outputs.

	Describe expected behavior to see and why, including links to documentations.

Code contribution

Prerequisites

Install Poetry [https://python-poetry.org] by following the official installation instructions [https://python-poetry.org/docs/#installation]. Optionally (but recommended), configure Poetry to create a virtual environment in a folder named .venv within the root directory of the project:

poetry config virtualenvs.in-project true

Setup

To create a development environment and install the runtime and development dependencies, run:

poetry install

Then enter the virtual environment created by Poetry:

poetry shell

Static checks

The project uses static checks using fantastic pre-commit [https://pre-commit.com/]. Every change is checked on CI and if it does not pass the tests it cannot be accepted. If you want to check locally then run following command to install pre-commit.

To turn on pre-commit checks for commit operations in git, enter:

pre-commit install

To run all checks on your staged files, enter:

pre-commit run

To run all checks on all files, enter:

pre-commit run --all-files

Pre-commit